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The ability of  various approximate coupled cluster (CC) methods to provide 
accurate first-order one-electron properties calculated as expectation values 
is theoretically analysed and computationally examined for BH and CO. For 
actual calculations the infinite number  of  terms of the expectation value 
expansion ((G) = (4,1exp (T+)~  exp (T)]4~)c) was truncated so that T1, 7"2, T3, 
and (1/2) T2 T2 clusters were retained on both sides of  G. The role of  individual 
clusters is carefully discussed. Inclusion of  7"1 is unavoidable, but if triples 
are essential in the energy evaluation, they may play an even more important 
role in the property expansion, as shown in the case of  CO. It is shown that 
the CC wave function, which is exact to second order, effectively satisfies the 
Hel lmann-Feynman theorem. 
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I. Introduction 

Parallel to the development of  many-body perturbation theory (MBPT) and 
coupled clusters (CC) computer  programs for the calculation of correlation energy 
of molecules, attempts have also been made to calculate various molecular 
properties for which the SCF method is often unsatisfactory. The natural and at 
the same time the most convenient approach to solving the latter problem has 
been the finite field (or more precisely the finite perturbation) theory (FPT), 
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which allows the utilization of existing MBPT/CC codes without any change. 
Also, as was suggested by Diercksen et al. [1], FPT should be taken as a 
"legitimate" approach, which leads to the proper definition of electric properties, 
e.g. the dipole moment, which are directly related to experimentally measurable 
quantities. FPT has been widely applied in calculations of various electric proper- 
ties of small systems [1, 2]. Besides its convenience, FPT also has some disadvan- 
tages. First, since the routine FPT calculations are based on numerical differenti- 
ation of the energy with respect to an external perturbation, the accuracy of 
energy calculations should usually be much higher than is customary. Second, 
at least two (or more) separate SCF and correlation energy calculations must be 
performed for each property component, which is time consuming. Third, for 
some magnetic properties the method can be applied only with difficulty [3]. 

As an alternative to the numerical differentiation, first (or higher) order properties 
may be calculated using analytical derivatives of the external-perturbation-depen- 
dent energies (elecfric field strength, field gradients etc.). General theories, mostly 
used for molecular geometry calculations, can be applied to CI [4-7] as well as 
to MBPT/CC [6, 8-10]. Within the MBPT/CC framework we can also mention 
the theoretical work of Sadlej [11] and Monkhorst [12], or the variational CC 
treatment of Arponen [13] and Pal [14]. For static properties, Pal also analysed 
and compared various CC approaches, with T ~  T2, in particular. Finally, the 
third possibility (adopted in this paper) is offered by calculating the expectation 
(average) value of the property operator (0) using the pertinent wave function (~). 

This is usually reduced to the task of evaluating the correlated density matrix, 
which can easily be contracted with the property integrals. Evaluation of the 
density matrix for the (standard) CI wave function restricted to single and double 
excitations is relatively easy, thanks to the finite number of terms in the wave 
function expansion and the need for handling only single- and double-excitation 
coefficients. Unlike variational CI, the CC wave function is an infinite expansion 
in which higher powers of non-variationally determined coefficients also take 
part. Obviously, the expectation value calculation from a CC wave function is 
therefore theoretically not so straigthforward as it is in the case of CI. 

It is fair to note here that the energy differentiation and expectation value 
approaches do not, in general, lead to the same result for approximate wave 
functions, since the Hellmann-Feynman theorem, (HFT) is only valid for exact 
wave function or wave functions with complete variation in a complete functional 
space defined by the method (e.g. SCF, MCSCF, full CI, full CC). The thorough 
analysis of this problem in the case of limited CI was given a few years ago by 
Nerbrant et al. [15]. In the present paper we shall try to analyse this problem 
for the case of various versions of the CC method. We shall try to determine 
what may be a reasonable truncation of the infinite expansion (1) to provide us 
with results that are quite close to those obtained by differentiating the energy. 
Finally, the theoretical analysis is supported by numerical results for CO and 
BH as test cases. 
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2. Expectation values from approximate CC wave functions 
and the Hellmann-Feynman theorem 

At the very beginning of this section, let us consider a system which is influenced 
by an external perturbation A~ (with the perturbation parameter A). If only the 
first-order response is taken into account, the perturbed Hamiltonian of such a 
system can be expressed as: 

H(A) = H(0)  + AO. (2) 

The externally perturbed energy 

(O(A)[H(A)[O(A)) 
E(~) - (3) 

<0(A)I0(A)) 
can be expanded in a power series of k as 

A2E (2) 
E (A) = E (0) + AE(')-~ . . . . .  (4) 

2 

where 0(A) is the wave function describing the pertinent externally perturbed 
system. Substituting from Eqs. (2) and (4) into Eq. (3) and subsequently differen- 
tiating at A = 0 we obtain the first-order perturbed energy (E(1)), which is closely 
related to the corresponding property 

(0(0)1~(0)) 7 ( 0 ( 0 )  [ H ( 0 ) - E ( 0 ) ]  I ~ / I A : o  (5) 

where (0) refers to the unperturbed system, S is the overlap, 

S=(O(O)IO(O)). 

Obviously, the first term on the right-hand side of Eq. (5) represents the expecta- 
tion value of the operator ~. The second term on the right-handside of Eq. (5) 
vanishes for "exact" wave functions in accord with the HFT. In general, this 
term (let us call it the non-HFT term) does not vanish for approximate wave 
functions and is responsible for non-validky of the HFT in such cases. Thus, to 
obtain the first-order property this term should be calculated together with the 
expectation value. Since the non-HFT term is usually much more complicated 
to calculate than the HFT term itself, its calculation is not a standard practice. 
Quite often it is simply neglected. However, its neglect should be based on careful 
analysis of its importance in the method used for the calculation of the expectation 
value. As mentioned above, Nerbrant et al. [15] analysed this term for the CI-SD 
case, and they have shown that it involves contributions from triple and higher 
excitations. Using similar consideration as applied by Nerbrant et a l ,  we are 
able to analyse the non-HFT term for approximate CC methods, too. 

In the single reference (UHF or closed shell RHF) CC method the wave function 
(0 in general) is given by the action of an exponential cluster operator exp (T) 
onto an HF reference state 4~. 

I0) : eT[4 )) (6) 
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where T is the excitation operator given as the sum of its/-excitation components: 

N 

T = f ~ (7)  
1=1 

T, y~ .abo.. +.bSc+k (8) = f i j k . . .  O 1 
i > j > k  

a > b > c  

abc . . .  ~k.-. are antisymmmetrized amplitudes of the operator 7"l which are to be 
determined. Here (and throughout the paper) we use i, j, k , . . .  and a, b, c , . . .  to 
denote occupied and virtual orbitals, respectively. In practice, T is restricted to 
some types of excitations [2], usually to T~ with 1 < 1 < 3 .  In addition, the 
expansion of exp (T) with a chosen set of T~ operators in Eq. (6) is not complete 
in some versions of the method (L-CCD, CCSDT-n etc.). The CC energy is 
obtained by projecting the Schr6dinger equation onto the reference state, or 
equivalently by first multiplying it from the left by exp( -T)  and by subsequent 
projection (cf. e.g. [12]): 

(&I( H -  E)e Tle~)= (r T ( H -- E)e r]&) = 0 (9a) 

(The "ab .... �9 ek... amplitudes can be obtained by projecting the SchrOdinger equation 
onto the subspace of all possible excited states of the chosen types of excitations 
in T and by solving the corresponding system of coupled (in general) non-linear 
equations: 

abc . . ,  abc  . . . .  T T = (Ook... [e He ]qS) = 0. (~Ok... ](H - E)eT[c~) (9b) 

Eqs (9a) and (9b) lead to a connected diagram expansion which ensures the size 
extension property of the method even in the case of truncated T[2]. Let us recall 
that Eqs. (6)-(9) are valid irrespective of the external perturbation. Then we can 
express the non-HFT term from Eq. (5) as (for simplicity we omit the constant 
2/S): 

(O(O)](H(O)-E(O)) I dO(A) 

= (O(O)](H(O)- E(O))e T(~ I 
dq~(A) 

de T(a) . 

+ < O ( O ) [ ( H ( O ) - E ( O ) ) ~  6(0)) ~=o" (10) 

Using the coupled perturbed Hartree-Fock theory we arrive at [15]: 

I d&(a) 
(11) 

where x~a is an expansion coefficient [15]. Substituting from Eqs. (7) and (11) 
into Eq. (10), and expanding exp (T(0)) we get for the first term on the right-hand 



On expectation value calculations of one-electron properties 295 

side 

(tg(O)[(H(O)-E(O))er(~ l dO(A) )l 
A = O  

= (O(O)](H(O) - E(O))(1 + T+�89 ' '  ") E xi~a+ilr 
ia 

= E x , o ( r  - E(0) )14 , (0 )7 )  
ia 

+ E x,ot~(4, (o)[ ( /4(o)  - E ( 0 ) ) [ O ( 0 ) ~  b) 
i jab  

_~ ~ b c c b bc abe 
x,o(t~ t~ - tj t~ + ts~) (O(O)((H(O) - E (0))[,~ (0) ~s~ ) + "  " "  

ia 
j > k  
b>c  

= E  c,(0(0)J ( H ( 0 )  - E ( 0 ) ) J ~ ( 0 ) , )  
l 

= E  c,(&(O),le THeT]fa(O)) (12) 
l 

&(0)~ is an excited state generated by the action of annihilation and creation 
operators on 6(0) .  c~ is an expansion coefficient related to this /-fold excited 
state. In the last equality we used Eq. (9b) (and the hermicity of the Hamiltonian) 
to show that this term is energy independent. 

If we realize that T(~,) can be expanded as a power series in A [12]: 

l 2 

T(A) = T(O)+AT(O)(~)+ 2 T(O)(2)+ . . .  (13) 

we can similarly express the second term of Eq. (10) as 

de T(A ) 

( ~ O ( 0 ) [ ( H ( 0 ) - E ( 0 ) ) - - 7 - - -  ~(0))  ,=o 

= (~9(O){(H(O) - E(O)) T(O)(1)eT(~ 

= E tT("(O(O)l(H(O) - E(0))lq~(0) ~) 
ia 

+ E  tT("tb(o(O)l(H(O) -- E(O))l~b (0) 7j b) 
ia 

jb  

ta(1){~.br c b bc abc 
-4- ~ ~i \ r j  *k tjtk+tjk)(O(O)l(H(O)--E(O))lgb(O)ijk ) + ' ' "  

ia 
j > k  
b>c  

= E d , (~ (O) l (n (O)  - E(O))I~(O),> 
l 

= • dt{ffa(O)t}e-rHeWlb(O)) (14) 
I 

where dt is an expansion coefficient. It is analogous but not equivalent to el. In 
Eqs. (12) and (14) we did not use any assumption on T. Obviously, if T is a 



296 J. Noga and M. Urban 

complete excitation operator all terms in these equations vanish, since Eq. (9b) 
is valid for all excited determinants. Whenever T is incomplete, Eq. (9b) is valid 
only for those chosen/-fold excitation operators (and corresponding/-fold excited 
determinants) that are involved in the approximate T. As a consequence, many 
of the terms in Eqs. (12) and (14) remain in approximate CC methods, namely 
contributions from cluster operators which were not included in T. This resembles 
the situation with CI-SD [15], when configurations which are not involved in the 
incomplete functional space are responsible for the non-HFT term. It should be 
noted, however, that for CI-SD both the energy and the expectation values of 
property operators suffer from the size non-extensivity. In spite of this defect, 
CI-SD expectation values of first-order properties occasionally agree with the 
experiment very well, mainly due to the fortuitous cancellation of non-HFT 
contributions and unlinked contributions that cause size non-extensivity. This 
was discussed thoroughly by Diercksen et al. [1]. 

In contrast to restricted CI, for CC wave functions (even with truncated T) the 
expectation values can be expressed in terms of connected contributions only [16] 

(4,[e TI4,) (15) 

where C indicates that only connected diagrams are to be considered in the 
diagrammatic representation of (~). Unfortunately, Eq. (15) represents an infinite 
expansion which needs to be truncated in practice. Although the finite expansion 
of the CC wave function 0(0) in Eq. (15) does not guarantee a connected 
expression for (0), we can choose a truncation that leads to errors which are of 
higher order than those introduced by the accuracy of the approximate wave 
function itself. We shall come back to the specific selection of the wave function 
in the forthcoming section. 

Another point which should be mentioned here is that the energies from Eqs. 
(3) and Eq. (9a) are not equivalent for approximate CC wave functions. As 
Monkhorst has shown [12], the difference between these two quantities is due 
to contributions from other excitations than those involved in an approximate 
T. Since in actual calculations the CC energy is evaluated from Eq. (9a) (i.e. not 
as an expectation value but as an eigenvalue of H) ,  one introduces a similar 
error either by FPT or by calculating the first-order property as an expectation 
value. For CCSDT (CC with singles, doubles and triples) the error is due to T4 
clusters which first appear in the fifth-order MBPT energy, or in the third-order 
MBPT wave function. Contributions from T4 clusters are usually assumed negli- 
gible, though there are indications that they may play an important role in systems 
with high quasidegeneracy [17]. 

3. Computational implementation 

In deciding to which terms the expansion (15) must be restricted, we used the 
logic of MBPT. We arrived at the conclusion that retention of all second-order- 
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type terms of  the wave function (i.e. terms which are exact up to the second 
order in the MBPT expansion) on both sides of  ~ in Eq. (15) should be an 
adequate truncation, since we only introduce an error which is of the same order 
as the non-HFT term. Thus, for our most sophisticated approach,  the CCSDT 
method and its variants [18-21] we restrict the Eq. (15) to the following terms 

=(qS(0)l( l+ T~+�89 T-~+ T~-)G(I+ T2+�89 TI+ r3)[~b(0))c. (16) 

For simpler CC methods, such as CCSD or CCD, T3 = 0 and T 1 --- T3 = 0, respec- 
tively. Let us recall that within a chosen method the T amplitudes are correctly 
determined by solving the Eq. (9b). 

A (  ) B 

( ) 
D X § 

( ) 
1 

( ) 
2 3 

2 

Fig. 1.A-I. All arrowless diagrams taken into account in the calculation of correlation contributions 
to first-order one-electron properties. For antisymmetrized (Hugenholtz) diagrams of T operator we 
use the notation introduced by Cizek [16]. By inserting diagrams F - I  into A, D and E, and by 
drawing arrows all individual diagrams can be generated.--x-- ,  vertex represents the property 
operator 
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Diagrams corresponding to Eq. (16) are depicted in Fig. 1, where the use of 
intermediate summation is applied. Thus, the true diagrams which contribute to 
the property are obtained by inserting intermediate "vertices" (diagrams F-I) 
into A, D, E. This is a standard practice in MBPT or CC, since in applying them 
one usually arrives at irreducible summations which are efficiently programmable, 
unlike true diagrams. When we take off the property operators from the diagrams 
A-E,  the remaining "opened" diagrams correspond to the correlation contribu- 
tions to the one-electron density matrix. The diagrams F and H may serve as 
an example of  such "opened" diagrams; besides being intermediate interaction 
diagrams, they also represent the contributions to the density matrix from 
diagrams A and E. Let us denote these contributions ppq where p, q are general 
indices for both occupied and virtual orbitals. The correlation contribution to a 
one-electron property is simply calculated as: 

(~}  . . . .  = 2 Ppqrr(pl~lq} (17) 
pq  

where (plO[q) are usual property matrix elements. They are the same as in SCF 
calculations, but run over all indices (not only over indices of occupied molecular 
orbitals as in regular SCF calculation of one-electron properties). Explicit for- 
mulae used in our computer program for calculating ppqrr are separately given 
in Table 1 for p, q being two occupied (i , j) ,  two virtual (a, b) or a mixed pair 
(i, a) of orbitals. Since the structure of these formulae is analogous to that in 
fourth-order MBPT the computer program and the computational demands are 
also analogous to those in fourth-order MBPT. Again the most time-consuming 

Table 1. Explicit formulae for correlated density matrix contributions 

Contribution" UHF reference RHF reference 
(in spinorbitals) b (in orbitals) c 

P~ -x(i,J) 
A 

Pab  -x(a, b) 

c 

B Pab  ~ a b t k t k  
k 

C cde cde 
P i j  -- ~ t im tjkl 

c > d > e  
k>-I 

C acd bcd 
Pab  ~ tk lmtklm 

k > l > m  
r  

o~' T, x(i, k)x(j, k) 
k 

Ol  p~ - Z  x(a, c)x(b, c) 
c 

-x( i , j )  

-x( . ,  b) 

-E t~t; 
c 

tktk 
k 

k ~ l  
dce edc ced 

-- 2 (  t jk I + tjkl -{- t jk I )] 

(l &kl~ . cd  bcd bed bcd Y~ t k l m [ 4 t k t  m + tim k + trek I \ 2 /  klm 
c>_d 

bcd bcd bcd 
- -  2 (  t t km + tmlk + t kml) ] 

E x(i, k)x(j, k) 
k 

-X x(a, c)x(b, c) 
c 
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Contribution a UHF reference RHF reference 
(in spinorbitals) b (in orbitals) c 

D 2  pq Y~ x(e, d )x (c , j  , i, d) 
cd 

+2 x(k,  1)x(i, k,j, l) 
kl 

D2 P~b - 2  x(k ,  l)x(a, l, k, b) 
kl 

+~ x(e, d)x(a ,  c, b, d) 
cd 

D3 Pq - Z X( i, m, k, I)x(j, m, k, l) 
k>l  
m 

- 2 x(c, k, i, d) x(c, k,j, d) 
kcd 

D3 
P ab 

p~ 

x( i , j )  

x ( a , b )  

x(~,J, k, t) 

x(a,  b, c, d) 

x(a , j ,  i, b) 

x(a , j ,  b, i) 

x(i,  a) 

5~ x(a,  e, c, d)x(b,  e,.c, d) 
c>d 

e 

+Z x(a, k, 1, c) x(b, k, l, c) 
klc 

2x(i, a) 

cd cd 
tik t jk 

c>d 
k 

~, ac bc -- tkt tkl 
k>l 

c 

2 cd cd 
tlj  tkl 

c>d 

, a b , c d  
tkl tkl  

k>l  

ac bc 
tlk t jk 

ck 

2 X(C, d)[2X(c,j, d, i )+x(c , j ,  i, d)] 
cd 

+2 x(k,  l)[2x(i, k,j, 1 ) - x ( k ,  i,j, l)] 
kl 

-~ .g (k ,  l)[2x(b, k, a, l )+  x (b  , k, 1, a)] 
kl 

+ ~. X(c, d)[2x(a,  c, b, d ) - X ( c ,  a, b, d)] 
cd 

- 2 x(k, I, i, m)[2x(k, l,j, m ) - X ( I ,  k,j, m)] 
klm 

- 2 (X(C, k, i, d)[2X(C, k,j, d ) + x ( c ,  k, d, j )]  
kcd 

+X(c, k, d, i)[ 2X(C, k, d , j )  + x(e, k,j, d)]} 

x(a, e, c, d)[2x(b,  e, e, d ) -  x(b, e, d, c)] 
cde 

+ ~  {x(a, k, l, c)[2x(b , k, l, c )+x(b ,  k, c, l)] 
klc 

+x(a, k, c, l)[2x(b, k, c, l)+ x(b, k, l, c)]} 

2x(i, a) 
cd cd dc tlk (2tjk -- tjk ) 

cdk 

-- 2 ac br tkl(2tkj - tbl~) 
klc 

~[ cd cd tq tkl 
cd 

ab cd 
tkl tkl  

kl 

~, (2tl k -  ac b . . . .  b ac tk  i )t]k -- tik t j  k 
ck 

ac bc 
tki tk j  

kc 

r(i, a ) +  Y" r(k, c)ti~ r( i, a ) +  Y~ r(k, c)(2tiak ~-  ti'~) 
ck ck 

- Z g(e, i, k, I)t~ - Z X(C, i, k, l)(2t~7-t~7 ) 
k>l klc 

c 

~ jk )  bc cb abc cba bac r( i ,a)  t T +  2 lljkabCtj kbc l a -b  2 1 - - ~  ( 2 t j k - - t j k ) ( 2 t i j  k - - l i j  k - - t i j k )  
j>k" j ~ k  
b>c bc 

x ( a ,  k, i , j )  ~ ca acd 2 cd acd dca adc tm(2tql -tij~ - t l j l  ) tkt tqt 
c>d cdl 

1 

a The superscript indicates from which diagram the contribution follows 
b Formulae are presented in terms of antisymmetrized amplitudes 
~ The final contribution to the property is 2ppq(pl~[q ) due to the spin factor 
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step is the calculation of triples, with summations over seven indices. Moreover, 
~abc it requires the storage of ~jk amplitudes. 

The main advantage of the above-mentioned calculation of first-order properties 
follows from the fact that the correlation contributions to the density matrix do 
not depend on the external perturbation. This allows us to evaluate a series of 
properties just from a calculation of contributions which arise from a single 
correlated wave function. Recently, a relaxed correlation density matrix calcula- 
tion based on low-order perturbation theory has been proposed by Bartlett's 
group [22]. 

Obviously, our computer  code can be used without any modification for true 
second-order MBPT wave functions. The estimation of non-HFT term is, however, 
not so clear as in the case of  CC. I f  we take into account that the second-order 
MBPT wave function is obtained within the first few iterations of the CC iterative 
solution [2], the ~bove approach should be acceptable at least for well-convergent 
systems. The computer code of one-electron properties closely follows the logic 
of  our program C O M E N I U S  [23] for MBPT and CC calculations. 

4. Sample calculations 

To illustrate the techniques described in the previous section, we have calculated 
the CC dipole, quadrupole and octopole moments for boron hydride and carbon 
monoxide. Our primary goal was to examine the performance of coupled cluster 
methods at various levels of sophistication, rather than to get a perfect agreement 
with experiment. We also tried to demonstrate the relative importance of various 
cluster operators in the calculation of expectation values of several molecular 
properties. 

In the CCSDT method we applied the CCSDT- la  approximation [18]. The single 
determinant restricted Har t ree-Fock wave function was our starting point in all 
cases. Calculations were carried out at experimental geometries. In the BH 
calculation we used the [4s3pld/2slp] basis set with exponents of boron d 
functions ad(m = 0.41 and exponents of hydrogen p functions % ( m  = 0.24 optim- 
ized for the dipole moment  of  BH by Maurolis et al. [24]. The basis for CO was 
constructed from a [5s3p] set augmented by carbon and oxygen d functions with 
exponents ~d~c)=0.7 and a ~ o / = l . 2  and diffuse functions with exponents 
c%p~c ) = 0.0438 and c~,,p~o)= 0.0845. This is the same basis as we used recently 
in the calculation of the HzCO-~ H ~ + C O  reaction energy [25]. 

4.1. Multipole moments of BI~I 

Calculated electric moments of BH are presented in Table 2. We notice that 
correlation effects change the SCF dipole moment  quite subs tan t ia l ly- i t  con- 
tributes by about 34% to the total moment.  The percentage contribution of 
electron correlation to quadrupole moments is smaller (about 16% ), but octopole 
moments are very heavily influenced by electron correlat ion--their  values 
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Table 2. SCF and CC'energy, dipole moment, quadrupole moments a and octopole moments" of BH 
at R = 2.336. All values are in a.u. 

Method (energy) FPT 
contribution /z (/z) (0z~) (0xx) (Ozzz) (O~) 

SCF(-25.124691) 0.658 0.658 -2.804 1.402 0.078 -0.039 
CCD(-25.225894) 0.505 0.601 -2.641 1.320 -0.091 0.045 

(~IT+GT2[4~)~ --0.061 0.177 --0.088 --0.179 0.090 
(r 0.005 -0.013 0.007 0.011 -0.005 

CCSD (-25.226848) 0.502 0.505 -2.409 1.205 -0.463 0.231 
(05 [ T+GTzlq~)c -0.067 0.185 -0.092 -0.193 0.096 

+ + (~IT2 T2 GTzT21&)c 0.005 -0.014 0.007 0.012 -0.006 
(r Ir 0.000 -0.007 0.003 0.008 -0.004 

Mixed b -0.092 0.231 -0.116 -0.368 0.184 

CCSDT-la (-25.228660) 0.494 0.491 -2.424 1.212 -0.535 0.267 
(~b I T2-GT2I(h)c -0.073 0.198 -0.099 -0.204 0.102 

+ T + (61T2 2 (~'Y2T21~))c 0.006 -0.016 0.008 0.014 -0.007 
(4)]TtGT, Ib) c -0.000 -0.007 0.004 0.007 -0.004 
(4~IT;6'T3[~b)~ -0.000 0.002 -0.001 0.001 -0.000 

Mixed c -0,100 0.204 -0,102 -0.430 -0.215 

Experiment d 0.4497 
+0,0826 

a Related to the centre of mass, 0.199 a.u. 
b Mixed contributions from Eq. (14), i.e. (&IGT~]4~)r and (O]T+(~Tz]Cb)c . Only diagram I1 is included 
in I (see Fig. 1) 
c Mixed contributions (&IOT~]~5)c, (~hlT+GT2105)c, (chlT+GT3[~)c and (d~IT~GT2T21fb)~. All diagrams 
are included in I 
d Taken from [24] 

increased considerably  and  even changed the sign. Analogous  trends were also 
found  in other works [e.g. 26]. 

In  order to verify the significance of n o n - H F T  terms in the dipole moment ,  we 

compared  the expectat ion value with the FPT results for indiv idual  approaches.  
In  accord with the previous analysis of CI and  CEPA approaches [27, 28], electron 

moments  from a wave func t ion  which does not  comprise single excitations are 
heavily affected by n o n - H F T  contr ibut ions.  This is fully confirmed by our C C D  
results, where the expectat ion value of the dipole momen t  is a factor of 1.2 too 
large compared  with its FPT counterpart .  The bad  agreement  of FPT and  expecta- 

t ion value dipole moments  with all methods which do not  conta in  single excitat ion 

operators may be expla ined as a "self-consistency effect" which is connected 
with the adapta t ion  of the wave funct ion  to the external field. With the C C D  
wave func t ion  the deviat ion of the expectat ion value dipole m o m e n t  from its 
FPT value is easily under s t andab le  using the d iagrammat ic  arguments.  Single 

excitat ion operators omit ted in CCD are unavo idab le  in the expectat ion value, 
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since the lowest-order diagrams which contain contributions from 7"1 operators, 
diagrams E with H1 and I1 insertions, are of the same order as the lowest-order 
contribution from T2, diagram A (see Fig. 1). More specifically, T2 operators 
whose amplitudes appear for the first time in the first-order wave function form 
altogether [i.e. from the left and the right side of the operator 6 in Eq. (15)] the 
second-order contribution to the T~CT2 term (i.e. the same as the GT, term with 
T1 amplitudes appearing for the first time in the second-order wave function). 
In contrast to the CCD expectation value, single excitations are implicitly involved 
in the FPT approach through the numerical differentiation of the CCD energies, 
as follows from Sect. 2. 

With CCSD and CCSDT methods the agreement of FPT and expectation values 
of the dipole moments is really very good. On grounds of diagrammatic arguments 
(vide infra) and analysis in Sect. 2, this may be expected for the very high quality 
CCSDT wave function. With CCSD, however, this agreement should not be 
generalized to other molecules, since triples are not so important for BH. Thus, 
CCSD mimics the CCSDT wave function very closely. More details will be given 
in the discussion of CO results. 

Upon analysing individual contributions to correlation effects in the electric 
moments of BH, it is readily seen that with CCSD and CCSDT wave functions 
the most important contributions arise from mixed terms, followed by the T~-~ T2 
term. All other contributions are an order of magnitude smaller. Since terms from 
T2 are strictly dominant in the CC correlation energy with canonical HF reference 
orbitals, one would intuitively expect the contribution from T~OT2 to dominate 
in electric properties as well. The reason why contributions" from T~GT2 and ~T~ 
are comparable simply follows from the fact that both are of the same order in 
electric properties. The energy is a completely different situation since first 
appearance of contributions from T2 and T~ differs by two orders. 

We may observe that the magnitude of the contribution from T~OT2 gradually 
increases from CCD to CCSDT electric moments. This is a consequence of the 
effect of T1 and T3 operators on T2 amplitudes in the CCSD and CCSDT wave 
functions. Thus, although direct contributions from TI~T~ and T30T3 (diagrams 
B and C) are negligible, 7"1 and T3 cor~tribute significantly through their effects 
on T2 amplitudes, in addition to their importance in the mixed term. 

4.2. Multipole moments of CO 

The dipole, quadrupole and octopole moments of CO are displayed in Table 3. 
We omitted CCD values, since we learned from BH results that this approach 
is not suitable for the expectation value calculations. Most noticeable is the huge 
effect of electron correlation on the dipole moment, which is positive at the SCF 
level but negative at the correlated level. This change in the sign of the dipole 
moment is very well known from many previous calculations (see e.g. [1, 2, 28]). 
Quadrupole and octopole moments are less sensitive to electron correlation, 
correlation contribution to these quantities being 2% and 26%, respectively. 
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Table 3. SCF and CC energy, dipole moment, quadrupole moments ~ and octopole moments a of CO 
at R = 2.13161 with the [6s4pld] basis set. Inner shell and corresponding highest virtual molecular 
orbitals are dropped in correlation calculations. All values are in a.u. 

Method (energy) 
contribution <~) (0z~) (0~) (O~z~) (Oz~x> 

SCF (-112.776146) 0.119 -1.707 0.854 -4.383 2.194 
CCSD (-113.088261) -0.120 -1.668 0.834 -3.481 1.741 

<61T~T21fb)c -0.047 0.000 0.000 0.183 -0.092 
+ + (q~]T 2 T 2 GT2T21&) c 0.001 --0.001 0,001 --0.009 0.004 

<4~IT;OT114~)c -0.007 -0.008 0.004 -0.005 0.002 

Mixed b -0.186 0.049 -0.024 0.737 -0.368 

CCSDT-la (-113.103322) -0.059 -1.671 0.835 -3.468 1.734 
<~IT~T21~>c -0.098 -0.01~ 0.005 0.208 -0.104 
<r 0,002 -0,001 0.001 -0.012 0.006 
(&IT~r Icb)c --0.005 -0.004 0.002 0.000 0.000 
(4~1T~-~T3I&)~ -0.010 -0.006 0,003 0.001 -0.001 

Mixed c -0.067 0.058 -0.029 0.724 -0.362 

Experiment a -0.048 - 1.44+0.03 

a Related to the centre of mass, 0.913547 a.u. 
b See footnote b, Table 2 
c See footnote c, Table 2 
a Taken from [29] 

As with BH, the most  impor t an t  cor re la t ion  cor rec t ion  arises f rom the mixed  
te rm and  f rom TROT2. Once again  the T2 ampl i tudes  are s ignif icant ly inf luenced 
by T1 and  7"3 clusters which  cause the difference o f  T+6T2 cont r ibu t ions  in C C S D  
and  CCSDT.  Unl ike  BH, for  CO, con t r ibu t ions  f rom T~6T1 and  T30Ta are not  
negl igible ,  espec ia l ly  when  compar ing  the final value  o f  the d ipo le  moment .  

Though  our  final d ipo le  and  q u a d r u p o l e  momen t s  agree with exper imen ta l  values  
qui te  well,  there  is someth ing  puzzl ing in the re la t ion  o f  the  d ipo le  moments  
f rom C C S D  and  C C S D T  methods .  Namely ,  the F P T  results  o f  N o g a  et al. [2, 29] 
show the C C S D  d ipo le  m o m e n t  to be 0.021 a.u., which  is less negat ive  than  the 
C C S D T  d ipo le  moment ,  which  is -0 .047  a.u. Our  t r end  is quite oppos i te .  A l though  
our  basis  set is s l ightly less ex t ended  than  the [Ts5p2d] set used  in [29], we could  
not  exp la in  this d i s c repancy  s imply  by  a basis  set effect. Also Jaque t  et al. [30] 
ob t a ined  a h ighly  ove res t ima ted  d ipo le  m o m e n t  o f  CO ca lcu la ted  as the expecta-  
t ion value  f rom a C E P A  wave funct ion  with  singles and  doubles .  The i na de qua c y  
of  the C E P A  expec ta t ion  values  o f  d ipo le  momen t s  is also s u p p o r t e d  by  o ther  
re la ted  ca lcu la t ions  (see e.g. [31]). Because  o f  the signif icant  effect o f  tr iples,  
which  in this case con t r ibu te  to the n o n - H F T  term,  we suspec ted  tha t  the C C S D  
expec ta t ion  value  might  be in d i sagreement  with the  F P T  value.  Unfo r tuna t e ly  
an FPT  ca lcu la t ion  with our  [6s4p 1 d ]  set was b e y o n d  the compu te  r t ime avai lab le  
to us. I n s t ead  we were forced  to verify the ag reemen t  o f  the expec ta t ion  value 
and  F P T  d ipo le  momen t s  using a D Z  basis  set. The results  in Table  4 confirm 
our  suspic ion.  Unl ike  C C S D ,  with C C S D T - l a  bo th  quant i t ies  agree excel lent ly ,  
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Table 4. SCF and CC energy and dipole moment of CO with the DZ 
basis set. All values are in a.u. Inner shell and corresponding highest 
virtual molecular orbitals are dropped in correlation calculations 

Method (energy) FPT 
contribution /z (/~) 

SCF (-112.685038) 0.165 0.165 
CCSD ( -  112.886100) -0.031 -0.147 

(q~] T~ ~T[& ) c -0.052 
+ + 

(~] T2 T 2 0'T= T:]&)c 0.000 
(r -0.008 

Mixed ~ -0.251 

CCSDT-la (-112.895595) -0.039 -0.033 
( 0b [ T2-r -0.067 
< 61 r~ T~-~T2 T=]r >c o.ooo 
<(~l T1- CTII~)~ --0.003 
<~I~OT~I~>~ -O.OLO 

Mixed b -0.116 

a See footnote b, Table 2 
b See footnote c, Table 2 

J. Noga and M. Urban 

which confirms the negligibility of non-HFT terms with our most accurate wave 
function. 

Comparing individual contributions in Tables 3 and 4, it is easily seen that neither 
the direct contribution from T~GT1 or T~zOT3 nor the influence of the T3 operator 
on T2 amplitudes (as measured by the difference in the magnitude of Tz6T2 in 
CCSD and CCSDT) is the source of the CCSD failure. The main reason is 
evidently the mixed term, which is too negative in CCSD. Using order by order 
analysis of  the diagrams for the expectation value, we observe that the next order 
mixed contribution, after the lowest (i.e. second) order ~T1 term, is the T[GT2 
term in CCSD and T[OT2 and T~T3 terms in CCSDT. Thus, if we do not 
consider the T~'T3 term in CCSD, which is of the same order as T[GT2, which 
is considered [both are formed from the second- and first-order wave function 
contributions in Eqs. (15) and (16)], we are taking an incomplete third-order 
contribution in the diagrammatic expansion of the expectation value. With 
CCSDT, in contrast to CCSD, we are complete up to the fourth order. The fact 
that the amplitudes of  T1 and T2 operators in CCSD are determined from the 
incomplete second-order-type wave function seems to be of lesser importance 
since the T~OT2 terms in CCSD and CCSDT do not differ too dramatically. 
Moreover, this contribution is less negative in CCSD than in CCSDT. On the 
basis df our results for CO one might arrive at the conclusion that we have to 
prefer the FPT approach over the expectation value approach in CCSD. However, 
we do not think so. In fact, both FPT and expectation value CCSD dipole 
moments of  CO are incorrect, simply because triples are unavoidable in this 
molecule. Where they are less important, as in BH, both approaches lead to 
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similar results. We tend to believe, however, that the FPT approach can absorb 
to a limited extent some deficiencies of  the wave function. This concerns, for 
example, the dipole moment  functions [2, 29], where the single determinant wave 
function ceases to be a good starting point for largely distorted geometries. 

Concerning CCSDT we wish to stress that all amplitudes of  respective T1, T2, 
and T3 operators are properly determined in CCSDT and that the CCSDT wave 
function is complete up to the second order. In this sense, the completeness of 
the determination of amplitudes resembles the completeness of  the determination 
of variational SCF and MC-SCF coefficients, which both obey the HFT. The first 
non-HFT terms with CCSDT arise from the third-order wave function, that is, 
they are at least of  the fifth order in the property expansion [see Eqs. (12)-(15) 
and the analysis in Sect. 2]. 

Conclusions 

1. Our theoretical analysis and computational experience have shown that the 
expectation value calculation of one-electron properties is a very effective 
approach,  since correlation contributions to a series of  properties may be obtained 
in a single run using the correlated density matrix elements. 

2. The effectiveness may even be enhanced by neglecting the T~GT3 term, which 
is usually small and difficult to calculate. 

3. In the computer  code one can use algorithms developed for MBPT and CC 
energy calculations. 

4. The first non-HFT terms arise from a wave function contribution which is one 
order higher than the last complete order of  the wave function used in the 
determination of amplitudes. In CCSD it is the term from T3, in CCSDT from T4. 

5. For BH we achieved very good agreement of  expectation value dipole moments 
with CCSD and CCSDT wave functions, thanks to the fact that T3 clusters are 
unimportant  in this molecule. For CO, triples are unavoidable and thus the 
CCSDT method is recommended in this case. The need for highly accurate wave 
functions in similar calculations have been previously stressed, e.g. in [32]. 

6. The systematic dominance of mixed terms and T~OT2 terms in all the calculated 
electric moments is demonstrated numerically and explained diagrammatically. 
The importance of the OT1 term is particularly stressed. 
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